Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 222: 105818, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38280564

RESUMO

In this research, we employed a deep reinforcement learning (RL)-based molecule design platform to generate a diverse set of compounds targeting the neuraminidase (NA) of influenza A and B viruses. A total of 60,291 compounds were generated, of which 86.5 % displayed superior physicochemical properties compared to oseltamivir. After narrowing down the selection through computational filters, nine compounds with non-sialic acid-like structures were selected for in vitro experiments. We identified two compounds, DS-22-inf-009 and DS-22-inf-021 that effectively inhibited the NAs of both influenza A and B viruses (IAV and IBV), including H275Y mutant strains at low micromolar concentrations. Molecular dynamics simulations revealed a similar pattern of interaction with amino acid residues as oseltamivir. In cell-based assays, DS-22-inf-009 and DS-22-inf-021 inhibited IAV and IBV in a dose-dependent manner with EC50 values ranging from 0.29 µM to 2.31 µM. Furthermore, animal experiments showed that both DS-22-inf-009 and DS-22-inf-021 exerted antiviral activity in mice, conferring 65 % and 85 % protection from IAV (H1N1 pdm09), and 65 % and 100 % protection from IBV (Yamagata lineage), respectively. Thus, these findings demonstrate the potential of RL to generate compounds with promising antiviral properties.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inteligência Artificial , Proteínas Virais , Farmacorresistência Viral , Vírus da Influenza B , Neuraminidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...